مقاله ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند با

 

برای دریافت پروژه اینجا کلیک کنید

مقاله ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند بارش_رواناب (مطالعه موردی:حوزه آبخیز بالخلوچای) با word دارای 10 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند بارش_رواناب (مطالعه موردی:حوزه آبخیز بالخلوچای) با word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند بارش_رواناب (مطالعه موردی:حوزه آبخیز بالخلوچای) با word،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند بارش_رواناب (مطالعه موردی:حوزه آبخیز بالخلوچای) با word :

سال انتشار: 1392
محل انتشار: اولین همایش ملی الکترونیکی کشاورزی و منابع طبیعی پایدار
تعداد صفحات: 10
چکیده:
فرآیند بارش- رواناب مهمترین فرآیند هیدرولوژیکی تأثیرگذار بر منابع آب در دسترس بشر است. مطالعه این فرآیند نقطه شروع یک مدیریت صحیح و در راستای توسعه پایدار است. مدل‌ها و روابط مختلفی جهت این مطالعه ارائه شده است که مدل شبکه عصبی مصنوعی به دلیل توانایی بالا در تجزیه و تحلیل سیستم‌های پیچیده‌ و غیرخطی مانند فرآیند بارش- رواناب کاربرد گسترده‌ای در علوم مرتبط با آب دارد. از این رو در این تحقیق کارایی شبکه عصبی مصنوعی پرسپترون چند لایه که عمدتا در شبیه‌سازی بارش- رواناب به کار برده می‌شود، جهت شبیه‌سازی بارش- رواناب و تخمین پارامتر دبی ماهانه حوزه آبخیز بالخلوچای و با استفاده از عوامل اقلیمی شامل بارندگی و تبخیر، مورد استفاده قرار گرفت. نکته قابل توجه در شبکه عصبی مصنوعی ساختار شبکه است که تعداد و آرایش لایه‌ها و نرون‌ها را مشخص می‌کند. در نهایت از بین ساختارهای مختلف طراحی شده و باتوجه به ضرایب کارایی مدل شامل ضریب همبستگی، میانگین مربعات خطا، میانگین مربعات خطای نرمال شده و میانگین مطلق خطا (به ترتیب برابر با 923/.، 0145/.، 276/. و 103/.)، شبکه عصبی مصنوعی پرسپترون چند لایه با تعداد 3 لایه مخفی و 3 نرون در هر لایه مخفی، الگوریتم مومنتم و تابع محرک تانژانت هایپربولیک که توانست دبی ماهانه مربوط به دوره 24 ماهه تست را با دقت قابل قبولی شبیه‌سازی کند، به عنوان دقیق‌ترین مدل و ساختار انتخاب شد.

 

دانلود این فایل

 

برای دریافت پروژه اینجا کلیک کنید